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Abstract
Discovery and application of causal knowledge in novel problem
contexts is a prime example of human intelligence. As new in-
formation is obtained from the environment during interactions,
people develop and refine causal schemas to establish a parsimo-
nious explanation of underlying problem constraints. The aim
of the current study is to systematically examine human abil-
ity to discover causal schemas by exploring the environment and
transferring knowledge to new situations with greater or differ-
ent structural complexity. We developed a novel OpenLock task,
in which participants explored a virtual “escape room” environ-
ment by moving levers that served as “locks” to open a door.
In each situation, the sequential movements of the levers that
opened the door formed a branching causal sequence that began
with either a common-cause (CC) or a common-effect (CE) struc-
ture. Participants in a baseline condition completed five trials
with high structural complexity (i.e., four active levers). Those
in the transfer conditions completed six training trials with low
structural complexity (i.e., three active levers) before completing
a high-complexity transfer trial. The causal schema acquired in
the transfer condition was either congruent or incongruent with
that in the transfer condition. Baseline performance under the
CC schema was superior to performance under the CE schema,
and schema congruency facilitated transfer performance when the
congruent schema was the less difficult CC schema. We com-
pared between-subjects human performance to a deep reinforce-
ment learning model and found that a standard deep reinforce-
ment learning model (DDQN) is unable to capture the causal ab-
straction presented between trials with the same causal schema
and trials with a transfer of causal schema.
Keywords: Active causal learning; schema transfer; deep rein-
forcement learning

Introduction
Causality has been dubbed the “cement of the uni-
verse” (Mackie, 1974). The key research question in the
field of causal learning is how various intelligent systems,
ranging from rats to humans and machines, can acquire knowl-
edge about cause-effect relations in novel situations. Decades
ago, a number of researchers (e.g., Shanks & Dickinson, 1988;
Shanks, 1991) suggested that causal knowledge can be acquired
by a basic learning mechanism, associative learning, that
non-human animals commonly employ in classical condition-
ing paradigms to learn the relationship between stimuli and
responses. A major theoretical account of associative learning
is the Rescorla-Wagner model, guided by prediction error in
updated associative weights on cue-effect links (Rescorla &
Wagner, 1972).

However, subsequent research has produced extensive evi-
dence that human causal learning depends on more sophisticated
processes than associative learning of cue-effect links (Holyoak
& Cheng, 2011). Human learning and reasoning involves the
acquisition of abstract causal structure (Waldmann & Holyoak,
1992) and strength values for cause-effect relations (Cheng,
1997). Causal graphical models (Pearl, 2000) have been inte-
grated with Bayesian statistical inference (Griffiths & Tenen-
baum, 2005, 2009; Lu, Yuille, Liljeholm, Cheng, & Holyoak,
2008) to provide a general representational framework for hu-
man causal learning (Holyoak & Cheng, 2011).

Nevertheless, most models of human causal learning assume
that the hypothesis space of causal variables and causal struc-
tures is given and that inference focuses on selecting the best
causal structure to explain the observed contingency informa-
tion relating causal cues to effects. It is unclear how an agent
could actively explore a completely novel situation in an online
fashion and narrow down the set of potential causal structures to
enable efficient inference.

In situations in which outcomes depend on the learner’s ac-
tions rather than simply observations, reinforcement learning
(RL) is a widely-used modeling tool. It is useful for designing
autonomous, dynamic agents capable of exploration in complex
environments. RL focuses on learning what to do by mapping
situations to actions, so as to maximize a reward signal (Sutton
& Barto, 1998). RL has historically been closely linked with as-
sociative learning theory and conceives of learning as essentially
a process of trial and error. The connection between classical
conditioning and temporal-difference learning, a central element
of RL, is widely acknowledged (Sutton & Barto, 1990). Hence,
RL could be considered as a modern version of associative learn-
ing, where learning is not only guided by prediction error but
also by other learning mechanisms, notably the estimation of the
reward function. Recent advances in RL, especially deep RL,
have demonstrated impressive success in applications involving
the design of autonomous, dynamic agents for exploration, in-
cluding playing Atari and Go (Mnih et al., 2015; Van Hasselt,
Guez, & Silver, 2016; Silver et al., 2016) and learning complex
robot control policies (Levine, Finn, Darrell, & Abbeel, 2016).

With these significant developments in RL, is it possible for
modern learning models to acquire human-like causal knowl-
edge? To address this question, we designed a novel task to ex-
amine learning of action sequences governed by different causal
structures, allowing us to determine in what situations humans
can transfer their learned causal knowledge. Our design in-
volves two types of basic causal structures (common cause (CC)
and common effect (CE); see Figure 1). When multiple causal
chains are consolidated into a single structure, they can form
either CC or CE schemas. Previous studies using an observa-
tional paradigm have found an asymmetry in human learning
for common-cause and common-effect structures (Waldmann &
Holyoak, 1992).

To design a novel environment for humans, we developed a
virtual “escape room”. Imagine that you find yourself trapped
in an empty room where the only means of escape is through
a door that will not open. Although there is no visible key-
hole on the door–nor do you see any keys lying around–there
are some conspicuous levers sticking out of the walls. Your first
instinct might be to pull the levers at random to see what hap-
pens, and given the outcome, you might revise your theory about
how lever interactions relate to the opening of the door. We re-
fer to this underlying theory as a causal schema: i.e., a concep-
tual organization of events identified as cause and effect (Heider,
1958). These schemas are discovered with experience and can
potentially be transferred to novel target problems to infer their
characteristics (Kubricht, Lu, & Holyoak, 2017).



L1 L2

L0

D D

CC3

(a)

L1 L2

L0

D

CE3

(b)

L3

D

L1 L2

L0

D D

CC4

(c)

L1 L3L2

L0

D

CE4

(d)
Figure 1: Common cause (CC) and common effect (CE) struc-
tures used in the present study. D indicates the effect of opening
the door. (a) CC3 condition, three lock cues; (b) CE3 condi-
tion, three lock cues. (c) CC4 condition, four lock cues; (d) CE4
condition, four lock cues.1

In the escape room example, one method of unlocking the
door is to induce the causal schema connecting lever interactions
to the door’s locking mechanism. However, it remains unclear
whether people are equally proficient in uncovering CC and CE
schemas in novel situations. In the current study, we first as-
sessed whether human causal learning can be impacted by the
underlying structure, comparing learning of a CC structure with
learning of a CE structure. We then examined whether learning
one type of causal structure can facilitate subsequent learning of
a more complex version of the same schema involving a greater
number of causal variables. We compared human performance
in a range of learning situations with that of a deep RL model
to determine whether behavioral trends can be captured by an
algorithm which learns solely by reward optimization, with no
prior knowledge about causal structure.

In the remainder of the paper, we first describe the RL algo-
rithms used for the present OpenLock task. We then describe
the design of an experiment and report human results. Next, we
describe our RL model and model results. Finally, we discuss
the implications of our findings for causal learning.

Reinforcement Learning
RL focuses on learning a mapping between states and actions to
maximize some reward function (Sutton & Barto, 1998). Q-
learning, a representative model-free RL technique, seeks to
learn an action-value function using expected discounted re-
wards (Watkins & Dayan, 1992). The optimal Q function is
defined as:

Q∗(s,a)=max
π

E
[
rt +γrt+1+γ2rt+2+ . . . |st = s,at = a,π

]
, (1)

where st is the state at time t, at the action, π=P(a|s) the agent’s
policy, γ∈ [0,1] a discount factor, and rt the reward.

A milestone of RL is the introduction of DQN (Mnih et
al., 2015), which overcomes limitations presented by previ-
ous neural-network-based RL methods. Specifically, DQN
uses experience replay (ONeill, Pleydell-Bouverie, Dupret, &
Csicsvari, 2010) to mitigate networks from over-fitting to recent
correlations in the observation sequence. DQN also introduced
a target network that is only updated every τ steps to further mit-
igate over-fitting. This method showed a remarkable ability to
play Atari games above human ability.

DDQN (Van Hasselt et al., 2016) expands on DQN by re-
ducing over-estimations of the Q function. While DQN uses a
single value estimator to both select and evaluate a particular ac-
tion, DDQN decouples selection and evaluation by learning two
value estimators: one for selection and another for evaluation.
DDQN shows superior performance and stability over DQN in
the vast majority of Atari games and has become one of the state-

1Example solution executions for CE3 and CC3 can be viewed at
https://vimeo.com/265596602
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Figure 2: (a) Starting configuration of a 3-lever trial. All levers
begin pulled towards the robot arm, whose base is anchored to
the center of the display. The arm interacts with levers by either
pushing outward or pulling inward. This is achieved by clicking
either the outer or inner regions of the levers’ radial tracks, re-
spectively. Only push actions are needed to unlock the door in
each lock situation. Light gray levers are always locked, which
is unknown to both human subjects and RL at the beginning of
training. Once the door is unlocked, the green button can be
clicked to command the arm to push the door open. The black
circle located opposite the door’s red hinge represents the door
lock indicator: present if locked, absent if unlocked. (b) Push to
open a lever. (c) Open the door by clicking the green button.

of-the-art RL methods. In this paper, we choose DDQN as the
computational model due to its straightforward implementation
and remarkable performance on various tasks.

Experiment: OpenLock Task
Participants
A total of 240 undergraduate students (170 female; mean age
= 21.2) were recruited from the University of California, Los
Angeles (UCLA) Department of Psychology subject pool and
were compensated with course credit for their participation.

Materials and Procedure
In the OpenLock task, participants were asked to “escape” from
a virtual room by opening a locked door that was controlled by
a lever mechanism (see Figure 2). The task was to figure out
what level mechanisms can open the door. Each lock situation
consisted of seven levers surrounding a robot arm and a door
which began in a locked state. The levers pertinent to the lock-
ing mechanism (i.e., active levers) were colored grey, and levers
irrelevant to the locking mechanism (i.e., inactive levers) were
colored white. Participants were not explicitly told which levers
were active or inactive but were instead required to learn the dis-
tinction through trial and error. This was not generally difficult,
however, as the inactive levers could never be moved. The order
in which the active levers needed to be moved followed either
a common cause (CC) or common effect (CE) schema (see Fig-
ure 1), and participants were given 30 attempts to discover every
solution in each situation. Participants were instructed to con-
sider solutions as “combinations” to each lock, and discovery
of every solution/combination was required to ensure that par-
ticipants understood the underlying causal schema in each situ-
ation. Participants also operated under a movement-limit con-
straint whereby only three movements could be used to both (1)
interact with the levers (two movements) and (2) push open the
door (one movement). If a participant tried to move an active
lever in an incorrect order, the lever would remain stationary
and a movement would be expended. Each trial reverted to its

https://vimeo.com/265596602
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Figure 3: Average number of attempts needed to find all unique
solutions in the 4-lever common cause (CC4) and common ef-
fect (CE4) baseline conditions. Error bars indicate standard er-
ror of the mean.

initial state once the three movements were expended, and the
experiment automatically proceeded to the next trial after 30 at-
tempts. The number of remaining solutions and attempts were
provided in a console window located on the same screen as the
OpenLock application.

In the environment, users commanded the movement of a sim-
ulated robot arm by clicking on desired elements in a 2D display.
Levers could either be pushed or pulled by clicking on their in-
ner or outer tracks, although pulling on a lever was never re-
quired to unlock the door. There were either 3 or 4 active levers
in each lock situation. We refer to the 3- and 4-lever common
cause situations as CC3 and CC4 (Figure 1a, 1c), respectively,
and the 3- and 4-lever common effect situations as CE3 and CE4
(Figure 1b, 1d), respectively. Note that these numbers corre-
spond with the number of active levers. The status of the door
(i.e., either locked or unlocked) was indicated by the presence
or absence of a black circle located opposite the door’s hinge.
Once the door was unlocked and the black circle disappeared,
participants could command the robot arm to push the door open
by clicking on a green push button. The robot arm consisted
of five segments that were free to rotate such that all elements
in the display were easily reached by the arm’s free end; the
arm position control was implemented using inverse kinematics.
Box2D (Catto, 2011) was used to handle collision, and the un-
derlying simulation environment uses OpenAI Gym (Brockman
et al., 2016) as the virtual playground to train agents and enforce
causal schemas through a finite state machine.

Participants were randomly assigned to one of six conditions
in a between-subjects experimental design (40 participants per
condition) and began the experiment by viewing a set of instruc-
tions outlining important components and details in the lock en-
vironment2. Fifteen additional participants were recruited but
subsequently removed from the analysis due to their inability
to complete any trial in the allotted number of attempts. The
first two experimental conditions were baselines that contained
five different lock situations comprised of either CC4 or CE4
trials, exclusively. These baseline conditions for the two con-
trol groups, denoted as CC4 and CE4, were included to assess
whether human causal learning can be impacted by the underly-
ing structure, comparing learning of a common-cause structure
with learning of a common-effect structure. For the remain-
ing four conditions, we examined whether learning one type
of causal structure can facilitate subsequent learning of a more
complex version of the same schema involving a greater number

2The instructional video can be viewed at https://vimeo.com/
265302423
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Figure 4: Transfer trial results. Average number of attempts
needed to find all unique solutions in the 4-lever common cause
(CC4; left) and common effect (CE4; right) conditions. Light
and dark grey bars indicate CC3 and CE3 training, respectively.
Error bars indicate standard error of the mean.

of causal variables (i.e., active levers). The four conditions con-
tained six training trials with 3-lever situations, followed by one
transfer trial with a 4-lever situation. The schema underlying
the 3- and 4-lever situations was either congruent (CC3-CC4,
CE3-CE4) or incongruent (CC3-CE4, CE3-CC4) and always re-
mained the same throughout the 3-lever training trials. Partici-
pants required approximately 17.4 min to complete the baseline
trials and 17.3 min to complete the training and transfer trials.

Human Results
We first compared performance across the two baseline condi-
tions where participants only completed the CC4 and CE4 trials.
The average number of attempts to solve a 4-lever task in each
of the baseline trials is shown in Figure 3. Participants showed a
clear learning effect as fewer attempts were needed for later tri-
als, F(4,75)= 40.16, p< .001. The main effect of causal struc-
ture was trending towards significance, F(1,78)= 3.63, p= .06,
and results from a two-sample t-test at the final trial (i.e., Trial
5) indicate that the task with the CE structure took significantly
more attempts to solve than the CC structure, t(78)= 2.00,
p< .05. This result suggests that when a situation involved rel-
atively high structural complexity, the CE structure was more
difficult to discern than the CC structure.

Next, we examined the training performance in the four
groups who completed both the training trials with 3-levers
and the transfer trial with 4-levers. A clear learning improve-
ment was found, indicated by a significant main effect of train-
ing trials, F(5,152)= 56.02, p< .001. There was no differ-
ence in training performance between the CC3 and CE3 groups,
F(1,158)= 0.11. Compared with the two control groups in the
four-lever situations, participants showed similar performance
in the three-lever situations, suggesting that structural complex-
ity impacts the comparative difficulty between CC and CE trials.
For simple structures with fewer causal variables, people appear
to learn different types of causal structures equally well. How-
ever, as complexity increases, some causal structures appear eas-
ier to learn than others. To further investigate whether the four
training groups achieved the same level of learning, we com-
pared the performance at the final training trial in the three-lever
task. There were no differences in performance between the
CC3-CC4 and CC3-CE4 groups, t(78) = 0.87, or the CE3-CC4
and CE3-CE4 groups, t(78) = 0.48. This suggests that partici-
pants in each training group had approximately the same level
of understanding of the underlying causal schema before mov-
ing to their respective transfer trials.

https://vimeo.com/265302423
https://vimeo.com/265302423


Finally, we examined participants’ transfer performance. The
average number of attempts needed to solve the transfer trials
are depicted in Figure 4. A two-way ANOVA revealed a sig-
nificant interaction effect between the training structure and the
testing structure, F(1,156)= 24.94, p< .001, indicating supe-
rior transfer when the same type of causal structures were used
in the training and transfer trials. The resulting plot shows that
participants trained under a CC3 structure performed better in
the CC4 condition than those trained under a CE3 causal struc-
ture, t(78)= 2.62, p= .01. Similarly, participants trained under
a CE3 structure performed better in the CE4 test trials than did
those who trained under a CC3 structure, t(78)= 4.27, p< .001.
Consistent with the baseline groups, there was also a signifi-
cant main effect of causal structure in the transfer test, as the
CE4 condition required more attempts than the CC4 condition,
F(1,158)= 17.14, p< .001.

Model Details
The state space of the lock environment consists of 16 binary di-
mensions: 7 for the state of each lever (pushed or pulled), 7 di-
mensions for the color of each lock (grey or white), 1 dimension
for the state of the lock (locked or unlocked), and 1 dimension
for the state of the door (closed or open). The action space con-
sists of 15 dimensions: each of the 7 levers has 2 actions (push
and pull), and the door has one action (push).

DDQN is used as the underlying Q-learning algorithm. The
neural network is set to consist of 4 hidden layers (Figure 5):
a 16-dimensional state space input vector, densely connected to
4 layers with 128 nodes, each of which using a ReLU activa-
tion function, leading to an output layer with 15 dimensions
and a linear activation. During policy evaluation, the action
with the highest output is chosen as the next action to take,
a∗t = argmax

a
P(a|s).

Reward Functions are perhaps the most critical part of RL. The
purpose of a reward function is to signal the agent when an ac-
tion helps or hurts achieving the goal (Sutton & Barto, 1998).
The agent’s goal is to maximize the accumulated reward over its
experience in the environment. We design a multitude of reward
functions to encode information about the environment:
• Basic A reward of 10 is given if the door is unlocked, 50 is

given if the door is opened, and otherwise 0.
• State change Builds on the basic reward function but adds

a reward of 0.5 if the agent’s action changes the observation
vector in any way.

• Unique solutions Builds on the basic reward function, but
only gives rewards if the successful action sequence has not
previously been executed.

• Negative immovable Builds on the basic reward function,
but also gives a reward of -0.5 if the agent interacts with a
lever that is immovable.

• Negative repeat Builds on the basic reward function but adds
a penalty of -0.25 for repeated actions to minimize the chance
that the agent repeats the same action.

• Partial action sequence Builds on the basic reward function
and state change. Awards a reward of 1 if the first action taken
is part of a solution. This allows for a smoother reward func-
tion and is equivalent to awarding a state change reward for
the first move only.

• Solution multiplier Builds on the base reward function but
adds a reward multiplier for each successive solution found.
For example, if the multiplier is set to 1.5x, the first solution
found has a reward of 1 for opening the door, then the second
solution has a reward of 1.5, and the third 2.25. The order in
which solutions are found does not matter. Intuitively, this is
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Figure 5: Neural network architecture of DDQN. Input con-
sists of a 16-dimensional state vector. All hidden layers are 128-
dimensional and densely connected with ReLU activation. The
output layer is 15-dimensional with linear activation.

an alternative mechanism to encode the importance of finding
multiple solutions rather than a single solution.

Model Results
We tested the RL’s ability to solve the OpenLock task by start-
ing with reward conditions and parameter values as close to hu-
man participants as possible. The unique solutions reward func-
tion only gives rewards for successful action sequences, which is
equivalent to the information human participants received from
the console window. However, this reward function results in an
agent incapable of meaningfully interacting with the environ-
ment. During DDQN’s experience replay, the same state-action
pair can yield different reward values if the agent executes the
same successful action sequence more than once (reward is only
given on the first execution). The agent may experience the same
state, take the same action, and receive a different reward. Even
worse, the agent will receive the reward only once per solution
per trial, making the probability of correctly updating networks
weights during experience replay low.

We empirically evaluated combinations of the other reward
functions. We found that the best DDQN performance can be
achieved by using the negative immovable, partial action se-
quence, and solution multiplier reward functions. This combina-
tion has a number of properties that make it conducive to learn-
ing because it: (1) penalizes the agent for performing meaning-
less actions, (2) encodes a reward for finding multiple solutions,
and (3) creates a smoother reward function by giving rewards
for performing the correct first action.

Specifically, the optimal agent uses the following DDQN pa-
rameters: discount factor, γ= 0.8; starting epsilon, ε= 1; mini-
mum epsilon, εmin = 0.01; learning rate, α= 0.001; epsilon de-
cay, εdecay = 0.995 (refer to Van Hasselt et al., 2016 for more
information on these parameters). At the end of each trial, ε was
set to 0.5 to encourage more exploration and to prevent the agent
from adopting a policy specific to the previous trial.

For baseline cases with only CC4 and CE4 conditions, the
RL agent was given 300 attempts per trial and looped over all
4-lever trials 10 times. For transfer conditions, the agent was
given 300 attempts per trial (in contrast to 30 attempts per trial
for human subjects) and looped over the training trials 100 times
(in contrast to only once for human subjects) during training. In
the testing, the agent was given 300 attempts per trial and looped
over the testing trials 10 times. This is different from the human
experiments, however, when the agent trained with one iteration
over the trials (with a higher number of attempts per trial), the
agent performed extremely poorly after the first trial. Although



Figure 6: Baseline trial results of RL agent. The frequency of
each reward category is plotted in log-scale; the number of at-
tempts is the same in each group. The decreasing height of the
bars indicates that one reward category is dominating; specifi-
cally the else category. The agent’s performance decreases as
the number of attempts increases, meaning that the agent is get-
ting worse at the task during training.

these differences in the experimental setup make a quantitative
comparison to human results difficult, general qualitative assess-
ments can be made to judge the overall performance of DDQN
in this task.

First, we examine the performance of the baseline over time
(Figure 6). The categories represent how close the agent was
to a solution when the attempt ended (i.e., when the agent had
executed three actions). The categories correspond to various
values of the reward accumulated over an attempt: (1) a category
for finding each possible solution (60 for the first, 90 for the
second, and 135 for the third using a solution multiplier of 1.5x),
(2) a category for unlocking the door, and (3) a category for
everything else (a reward lower than the other categories). We
aggregate the counts of each category to examine how the agent
learns over time.

For baseline conditions with only CC4 and CE4 trials, the RL
model shows that it is able to find all 3 solutions, evidenced by
the proportion of attempts in the open 3 category. However, the
proportion of attempts in the open 3 category is lower than in
open 2 and open 1 (the same is true for open 2 and open 1).
This indicates that the agent has a difficult time finding the sec-
ond and third solution after finding the first, despite the higher
reward of the second and third solution. Even worse, the agent
finds fewer solutions as the agent trains more. Figure 6 shows
the else category increasing as the attempt number increases,
meaning that the agent is performing attempts that result in little
to no reward more often in later training than in earlier training.

Figure 7 shows the results of the transfer trial from train-
ing on the 3-levers and transferring to the 4-levers. Models for
both CE3-CC4 and CC3-CC4 executed solutions approximately
30% of all attempts. We note that the CE3-CE4 transfer case
is slightly easier than the other cases; a solution was executed
42% of all attempts. CC3-CE4 transfer is harder than the other
cases; a solution was executed only 16% of all attempts. In con-
trast, CE3-CE4 was the second hardest transfer case for humans;
however, CC3-CE4 was also the most difficult case for humans.
Overall, it appears the asymmetry between transfer cases is less
pronounced in the RL’s model compared to human performance.

These results suggest that while the RL model is able to un-
cover some knowledge about the mechanics behind the Open-
Lock task, the agent fails to form a useful abstraction between
trials, both when the agent is transferring between congruent
causal schema and incongruent causal schema. If the RL model
was learning an abstract causal schema and applying it success-
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Figure 7: Transfer trial results of RL. The frequency of each
reward category is plotted in log-scale; the number of attempts
are the same in each transfer case. Note that CC3-CC4 and CE3-
CC4 have nearly the same proportions while CC3-CE4 appears
more difficult and CE3-CE4 is easier.

fully, in the baseline results, we would expect to see the relative
proportion of the else category to decrease while the relative
proportion of the unlock, open 1, open 2, and open 3 increased.

In the human results, we see a monotonically decreasing num-
ber of attempts (thereby monotonically increasing performance
on the OpenLock task). In contrast, we see the RL model mono-
tonically increasing the number of unsuccessful of attempts dur-
ing baseline training (thereby monotonically decreasing perfor-
mance). This result suggests that our DDQN agent is incapable
of forming the abstract causal structure humans are implicitly or
explicitly encoding. If our RL model was learning an encoding
of the common causal structure between trials, we would expect
the performance to increase over time.

These results suggest our DDQN agent is not forming the
causal abstractions humans form. The different configurations
of the levers only switch the location of each lever in the casual
structure; once the position of each lever in the causal structure
has been identified, an optimal agent can solve the task in two
attempts in the 3-lever case or three attempts in the 4-lever case.
In our experiments, DDQN is incapable of forming a policy that
encodes this casual structure.

Discussion
Why is CE more difficult than CC? Human results show that
the CE condition required a greater number of attempts in all
cases. One potential explanation of this phenomenon relies on
the ambiguity from environmental feedback after executing the
first action. In the CC situation, the environment only changes if
the first action is correct (i.e., the agent pushes on the L0 lever).
After pushing on L0 in the first action, the agent can then push
either of the remaining active levers to unlock the door. Once the
agent receives positive environmental feedback, it is less likely
to make a mistake.

In contrast, if the first action is correct in the CE situation
(pushing on L1 or L2), pushing on one of the remaining ac-
tive levers is not guaranteed to unlock the door (e.g. if L2 is
pushed after L1, the door remains locked). This introduces ad-
ditional ambiguity to the agent after executing the correct first
action. However, CE has two correct first actions in contrast to
CC’s single correct first action. While this makes the first ac-
tion easier, we speculate that CC contains less ambiguity from
the agent’s planning perspective. Even though it is more diffi-
cult to select the correct first action, the environmental feedback
from the CC’s first action (i.e., L1 and L2 not moving) provides
more guidance than the environmental feedback from CE’s sec-
ond action. Additional experiments are needed to verify this
hypothesis and will be conducted as future work.



Why is this task difficult for DDQN? The OpenLock environ-
ment presented here presents many challenges to traditional RL.
First, the variation of the lever configurations of trials requires
learning abstractions between configurations; each trial can be
thought of as a different “game” with the same causal schema.
DDQN was designed to learn singular games at a time rather
than transfer knowledge between different games (Van Hasselt
et al., 2016).

Second, the environment’s state and action spaces are low di-
mensional and discrete. This results in a discrete and sparse
reward function, which makes gradient descent difficult for
DDQN. In contrast to most Atari games where random actions
typically move the player (or perform another typically incon-
sequential action), exploratory mistakes in OpenLock are very
common and almost always result in failing to open the door.

Third, state changes modify the underlying mechanics of the
environment; e.g., for CC trials, pushing on L0 unlocks L1 and
L2. This is unlike traditional Atari games where the visual dy-
namics of the environment directly influence the reward func-
tion. While this maintains the Markov property assumed in Q-
learning, it requires reasoning about the latent state space of the
causal schema, which is not present in most Atari games.

Fourth, humans using an optimal policy must remember their
previous solutions; i.e., an optimal policy is non-Markovian. If
humans were using a Markovian policy, their attempts to find
the second and/or third solutions should be evenly distributed
with the first solution found. However, many participants find
all solutions within 2-3 attempts (finding two solutions in two
attempts requires a lucky guess on the first attempt).

RL assumes the problem is Markovian and is therefore unable
to remember the solutions already found. We relaxed this con-
straint by allowing the state space to be semi-Markovian; the
number of solutions found was appended to the state space as
a binary vector. However, empirically, this made no difference
in performance to the fully-Markovian RL results. In fact, us-
ing any combination of the unique solutions reward function re-
sulted in essentially no learning; after the agent finds a solution
and takes the exact same action sequence again, they are given
no reward. This means the agent only has one positive example
per trial per solution, making it difficult to learn a meaningful
policy during experience replay and gradient descent. However,
future work should include an exploration into RL agents explic-
itly equipped with memory, such as a recurrent neural network
(RNN). These agents may be better equipped to handle the long-
term temporal constraints of finding all solutions.
What DDQN parameters can be learned from human par-
ticipants? We fit an exponential decay model to human per-
formance during the 6 training trials; this exponential decay is
used to control the exploration vs. exploitation of DQN/DDQN
agents. This regression shows humans are learning with a decay
rate of 0.548 and 0.743 for the median and mean, respectively.

Epsilon decay parameters of 0.548 and 0.743 are extremely
low; for the higher of the two settings, 0.743, the RL agent’s
exploration rate is less than one percent within 16 steps of
the simulation. Typical RL epsilon decay settings are above
0.99 to allow exploration for thousands of simulation steps.
These human-extracted parameter settings result in no meaning-
ful learning for the RL agent. Instead, the RL agent adopts an
uninformed, meaningless policy quickly and does not effectively
explore the environment.

Future work should include a more thorough exploration of
fitting a RL model to human performance data. Fitting such a
model might yield additional insights into the differences be-
tween RL and human causal learning. Additional work should

also include directly integrating causal models into RL. DDQN
uniformly samples over the action space during exploration, re-
gardless of prior experience. A Bayesian network could be
learned simultaneously to the RL model and used to select more
optimal explorations (i.e., explorations that aid the most in iden-
tifying or refuting causal links in the Bayesian network). This
could drastically improve the exploration process of DDQN.
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